

Welcome to Happyly’s documentation!

Happyly is a scalable solution for systems which handle any kind of messages.

Happyly helps to abstract your business logic from messaging stuff,
so that your code is maintainable and ensures separation of concerns.

Have you ever seen a codebase where serialization,
message queue managing and business logic
are mixed together like a spaghetti? I have.
Imagine switching between Google Pub/Sub and Django REST Framework. Or Celery.
This shouldn’t be a nightmare but it often is.

Here’s the approach of Happyly:

	Write you business logic in universal Handlers,
which don’t care at all how you serialize things or send them over network etc.

	Describe your schemas using ORM/Framework-agnostic technology.

	Plug-in any details of messaging protocol, serialization and networking.
Change them with different drop-in replacements at any time.

Happyly can be used with Flask, Celery, Django, Kafka or whatever
technology which can be utilized for messaging.
Happyly also provides first-class support of Google Pub/Sub.

Contents:

	Use cases
	Google Pub/Sub

	Painless transport change

	Installation

	Key Concepts
	Handler

	Executor

	Listener

	Stages
	Deserializer

	Serializer

	Publisher

	Callbacks
	Overview

	What if I need an emergency stop?

	API Reference
	happyly.listening.executor
	happyly.listening.executor.Executor

	happyly.listening.executor.ResultAndDeserialized

	happyly.listening.listener
	happyly.listening.listener.BaseListener

	happyly.listening.listener.EarlyAckListener

	happyly.listening.listener.LateAckListener

	happyly.listening.listener.ListenerWithAck

	happyly.schemas.schema
	happyly.schemas.schema.Schema

	happyly.caching.cacher
	happyly.caching.cacher.Cacher

	happyly.caching.mixins
	happyly.caching.mixins.CacheByRequestIdMixin

	happyly.serialization.serializer
	happyly.serialization.serializer.Serializer

	happyly.serialization.serializer.SerializerWithSchema

	happyly.serialization.deserializer
	happyly.serialization.deserializer.Deserializer

	happyly.serialization.deserializer.DeserializerWithSchema

	happyly.handling.handler
	happyly.handling.handler.Handler

	happyly.handling.dummy_handler._DummyHandler

	happyly.exceptions
	happyly.exceptions.FetchedNoResult

	happyly.exceptions.StopPipeline

Indices and tables

	Index

	Module Index

	Search Page

Use cases

Google Pub/Sub

Let’s be honest, the official
Python client library [https://googleapis.github.io/google-cloud-python/latest/pubsub/]
is too low-level.
You must serialize and deserialize things manually,
as well as to ack and nack messages.

Usual way:

def callback(message):
 attributes = json.loads(message.data)
 try:
 result = process_things(attributes['ID'])
 encoded = json.dumps(result).encode('utf-8')
 PUBLISHER.publish(TOPIC, encoded)
 except NeedToRetry:
 _LOGGER.info('Not acknowledging, will retry later.')
 except Exception:
 _LOGGER.error('An error occured')
 message.ack()
 else:
 message.ack()

Happyly way:

def handle_my_stuff(message: dict):
 try:
 return process_things(message['ID'])
 except NeedToRetry as error:
 raise error from error
 except Exception:
 _LOGGER.error('An error occured')

handle_my_stuff is now also usable with Celery or Flask.
Or with yaml serialization.
Or with message.attributes instead of message.data.
Without any change.

Painless transport change

Let’s say you are prototyping your project with Flask
and are planning to move to Celery for better fault tolerance then.
Or to Google Pub/Sub. You just haven’t decided yet.

Easy! Here’s how Happyly can help.

	Define your message schemas.

class MyInputSchema(happyly.Schema):
 request_id = marshmallow.fields.Str(required=True)

class MyOutputSchema(happyly.Schema):
 request_id = marshmallow.fields.Str(required=True)
 result = marshmallow.fields.Str(required=True)
 error = marshmallow.fields.Str()

	Define your handler

def handle_things(message: dict):
 try:
 req_id = message['request_id']
 if req_id in ALLOWED:
 result = get_result_for_id(req_id)
 else:
 result = 'not allowed'
 return {
 'request_id': req_id
 'result': result
 }
 except Exception as error:
 return {
 'request_id': message['request_id']
 'result': 'error',
 'error': str(error)
 }

	Plug it into Flask:

@app.route('/', methods=['POST'])
def root():
 executor = happyly.Executor(
 handler=handle_things,
 deserializer=DummyValidator(schema=MyInputSchema()),
 serializer=JsonifyForSchema(schema=MyOutputSchema()),
)
 request_data = request.get_json()
 return executor.run_for_result(request_data)

	Painlessly switch to Celery when you need:

@celery.task('hello')
def hello(message):
 result = happyly.Executor(
 handler=ProcessThings(),
 serializer=happyly.DummyValidator(schema=MyInputSchema()),
 deserializer=happyly.DummyValidator(schema=MyOutputSchema()),
).run_for_result(
 message
)
 return result

	Or to Google Pub/Sub:

happyly.Listener(
 subscriber=happyly.google_pubsub.GooglePubSubSubscriber(
 project='my_project',
 subscription_name='my_subscription',
),
 handler=ProcessThings(),
 deserializer=happyly.google_pubsub.JSONDeserializerWithRequestIdRequired(
 schema=MyInputSchema()
),
 serializer=happyly.google_pubsub.BinaryJSONSerializer(
 schema=MyOutputSchema()
),
 publisher=happyly.google_pubsub.GooglePubSubPublisher(
 topic='my_topic',
 project='my_project',
),
).start_listening()

5. Move to any other technology. Or swap serializer to another.
Do whatever you need while your handler and schemas remain absolutely the same.

Installation

Happyly is hosted on PyPI, so you can use:

pip install happyly

There are extra dependencies for some components.
If you want to use Happyly’s components for Flask, install it like this:

pip install happyly[flask]

There is also an extra dependency which enables cached components via Redis.
If you need it, install Happyly like this:

pip install happyly[redis]

Key Concepts

Handler

Handler is the main concept of all Happyly library.
Basically a handler is a callable which implements business logic, and nothing else:

	No serialization/deserialiation here

	No sending stuff over the network

	No message queues’ related stuff

Let the handler do its job!

To create a handler you can simply define a function which takes a dict as an input
and returns a dict:

def handle_my_stuff(message: dict):
 try
 db.update(message['user'], message['status'])
 return {
 'request_id': message['request_id'],
 'action': 'updated',
 }
 except Exception:
 return {
 'action': 'failed'
 }

Done! This handler can be plugged into your application:
whether it uses Flask or Celery or whatever.

Note that you are allowed to return nothing
if you don’t actually need a result from your handler.
This handler is also valid:

def handle_another_stuff(message: dict):
 try
 neural_net.start_job(message['id'])
 _LOGGER.info('Job created')
 except Exception:
 _LOGGER.warning('Failed to create a job')

If you prefer class-based approach, Happyly can satisfy you too.
Subclass happyly.Handler() and implement the following methods:

class MyHandler(happyly.Handler):

 def handle(message: dict)
 db.update(message['user'], message['status'])
 return {
 'request_id': message['request_id'],
 'action': 'updated',
 }

 def on_handling_failed(message: dict, error)
 return {
 'action': 'failed'
 }

Instance of MyHandler is equivalent to handle_my_stuff

Executor

To plug a handler into your application you will need happyly.Executor()
(or one of its subclasses).

Executor brings the handler into a context of more pipeline steps:

	deserialization

	handling itself

	serialization (optional)

	publishing (optional)

So a typical construction of an Executor looks like this:

my_executor = Executor(
 deserializer=...
 handler=...
 serializer=...
 publisher=...
)

Executor implements two crucial methods: run()
and run_for_result().
run(message) starts an execution pipeline for the provided message.
run() returns nothing but can optionally publish a serialized result of
handling.

[image: _images/run.png]
If you’d like to deal with the result by yourself, use run_for_result()
which returns a serialized result of handling.

[image: images/run_for_result.png]
Executor manages all the stages of the pipeline,
including situation when some stage fails.
But the implementation of any stage itself (deserialization, handling,
serialization, publishing) is provided to a constructor
during executor instantiation.

You can use pre-made implementation of stages provided by Happyly
or create you own (see Stages)

To customize what happens between the stages use Callbacks.

Listener

Probably you don’t want to invoke run() each time.
You can bind an executor to some event by creating a BaseListener().
BaseListener is a subsclass of Executor which is all the same
but has two additions:

	the constructor requires one more parameter - subscriber;

	one more method added - BaseListener.start_listening().

Stages

Deserializer

The simplest deserializer is a function which
takes a received message and returns a dict of attributes.

Here is an imaginary example:

def get_attributes_from_my_message(message):
 data = message.get_bytes().decode('utf-8')
 return json.loads(data)

You’ll need a different deserializer for different
message transport technologies or serialization formats.

The same deserializer can be written as a class:

class MyDeserializer(happyly.Deserializer):
 def deserialize(self, message):
 data = message.get_bytes().decode('utf-8')
 return json.loads(data)

A class-based deserializer can implement a fallback method
that constructs an error result:

class MyDeserializer(happyly.Deserializer):
 def deserialize(self, message):
 data = message.get_bytes().decode('utf-8')
 return json.loads(data)

 def build_error_result(self, message, error):
 return {'status': 'failed', 'error': repr(error)}

Note that if deserialization fails, then handling is skipped
and the return value of build_error_result is used
as a result of handling.

Class-based deserializer are also useful for parametrization,
e.g. with message schemas.

Serializer

Serialization happens to the result provided by handler.
This step is optional.
It is useful when publishing occurs, or when the value is retrieved
with Executor.run_for_result().

The simplest serializer is a function that takes
dict as an input and returns… well, whatever you need.

def prepare_response(message_attributes):
 resp = flask.jsonify(message_attributes)
 if 'error' in attributes:
 resp.status = 400
 return resp

As usual, there is a class-based approach:

class MySerializer(happyly.Serializer):

 def serialize(message_attributes):
 resp = flask.jsonify(message_attributes)
 if 'error' in attributes:
 resp.status = 400
 return resp

Publisher

After result is serialized it can be either returned
(if Executor.run_for_result() is used) or published
(if Executor.run() is used).
Note that publishing is an optional step - executor that just does the things
without sending a message is a valid one too.

Publisher can be defined as a function which takes the only argument -
a serialized message.

def publish_my_result(serialized_message):
 my_client.publish_a_message(serialized_message)

If you’d like a class-based approach,
please subclass happyly.BasePublisher().
Here’s how one of the Happyly’s components is implemented:

class GooglePubSubPublisher(happyly.BasePublisher):
 def publish(self, serialized_message: Any):
 future = self._publisher_client.publish(
 f'projects/{self.project}/topics/{self.to_topic}', serialized_message
)
 try:
 future.result()
 return
 except Exception as e:
 raise e

 def __init__(self, project: str, to_topic: str):
 super().__init__()
 self.project = project
 self.to_topic = to_topic
 self._publisher_client = pubsub_v1.PublisherClient()

Callbacks

Overview

Executor (as well as BaseListener) provides a rich
pipeline which manages stages, their failures and actions between stages.

A simplified representation of the pipeline (omitting any failures) looks like this:

[image: _images/callbacks.png]
Deserialization, handling, serialization and publishing are provided
by Stages.

Each step of the pipeline emits an event which can be handled by the corresponding
callback.
Base classes (Executor and BaseListener) do nothing but logging inside
their callbacks. You can customize any step by overriding any callback in a child class:

class MyExecutor(happyly.Executor):

 def on_received(original_message):
 original_message.ack()

 def on_handling_failed(
 self,
 original_message: Any,
 deserialized_message: Mapping[str, Any],
 error: Exception,
):
 if isinstance(error, NeedToRetry):
 original_message.nack()

The example above uses on_handling_failed which is called whenever
handler raises an exception.
Actually, here’s the full picture with failures:

[image: _images/callbacks_with_failures.png]
Note that in case deserialization fails, handling is not conducted.
Instead executor tries to get a fallback result via
Deserializer.build_error_result and
this result is used instead of the result of handling.

What if I need an emergency stop?

You can raise happyly.StopPipeline inside any callback - and the pipeline will
be stopped immediately.
Well, actually on_stopped will be invoked then, as the last resort to finish up.

[image: _images/stop.png]
At the rest of the cases, i.e. if pipeline is not stopped, on_finished
is guaranteed to be called at the very end.

API Reference

	happyly.listening.executor

	

	happyly.listening.listener

	BaseListener and its subclasses.

	happyly.schemas.schema

	

	happyly.caching.cacher

	

	happyly.caching.mixins

	

	happyly.serialization.serializer

	

	happyly.serialization.deserializer

	

	happyly.handling.handler

	

	happyly.handling.handling_result

	

	happyly.handling.dummy_handler._DummyHandler

	

	happyly.exceptions

	

happyly.listening.executor

Description

Classes

	Executor([handler, deserializer, publisher, …])

	Component which is able to run handler as a part of more complex pipeline.

	ResultAndDeserialized(result, deserialized)

	Create new instance of ResultAndDeserialized(result, deserialized)

happyly.listening.executor.Executor

	
class happyly.listening.executor.Executor(handler=<happyly.handling.dummy_handler._DummyHandler object>, deserializer=None, publisher=None, serializer=None)

	Bases: typing.Generic [https://docs.python.org/3/library/typing.html#typing.Generic]

Component which is able to run handler as a part of more complex pipeline.

Implements managing of stages inside the pipeline
(deserialization, handling, serialization, publishing)
and introduces callbacks between the stages which can be easily overridden.

Executor does not implement stages themselves,
it takes internal implementation of stages from corresponding components:
Handler, Deserializer, Publisher.

It means that Executor is universal
and can work with any serialization/messaging technology
depending on concrete components provided to executor’s constructor.

	on_deserialization_failed(original_message, …)

	Callback which is called right after deserialization failure.

	on_deserialized(original_message, …)

	Callback which is called right after message was deserialized successfully.

	on_finished(original_message, error)

	Callback which is called when pipeline finishes its execution.

	on_handled(original_message, …)

	Callback which is called right after message was handled (successfully or not, but without raising an exception).

	on_handling_failed(original_message, …)

	Callback which is called if handler’s on_handling_failed raises an exception.

	on_published(original_message, …)

	Callback which is called right after message was published successfully.

	on_publishing_failed(original_message, …)

	Callback which is called when publisher fails to publish.

	on_received(original_message)

	Callback which is called as soon as pipeline is run.

	on_serialization_failed(original, …)

	

	on_serialized(original_message, …)

	

	on_stopped(original_message[, reason])

	Callback which is called when pipeline is stopped via StopPipeline

	run([message])

	Method that starts execution of pipeline stages.

	run_for_result([message])

	

	
handler = None

	Provides implementation of handling stage to Executor.

Type: Union [https://docs.python.org/3/library/typing.html#typing.Union][Handler, Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]]

	
deserializer = None

	Provides implementation of deserialization stage to Executor.

If not present, no deserialization is performed.

Type: ~D

	
publisher = None

	Provides implementation of serialization and publishing stages to Executor.

If not present, no publishing is performed.

Type: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][~P]

	
on_received(original_message)

	Callback which is called as soon as pipeline is run.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received,
without any deserialization

	
on_deserialized(original_message, deserialized_message)

	Callback which is called right after message was deserialized successfully.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received,
without any deserialization

	deserialized_message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Message attributes after deserialization

	
on_deserialization_failed(original_message, error)

	Callback which is called right after deserialization failure.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received,
without any deserialization

	error (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – exception object which was raised

	
on_handled(original_message, deserialized_message, result)

	Callback which is called right after message was handled
(successfully or not, but without raising an exception).

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	deserialized_message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Message attributes after deserialization

	result (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Result fetched from handler

	
on_handling_failed(original_message, deserialized_message, error)

	Callback which is called if handler’s on_handling_failed
raises an exception.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	deserialized_message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Message attributes after deserialization

	error (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – exception object which was raised

	
on_published(original_message, deserialized_message, result, serialized_message)

	Callback which is called right after message was published successfully.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	deserialized_message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Message attributes after deserialization

	result (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Result fetched from handler

	
on_publishing_failed(original_message, deserialized_message, result, serialized_message, error)

	Callback which is called when publisher fails to publish.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	deserialized_message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Message attributes after deserialization

	result (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Result fetched from handler

	error (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – exception object which was raised

	
on_finished(original_message, error)

	Callback which is called when pipeline finishes its execution.
Is guaranteed to be called unless pipeline is stopped via
StopPipeline.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Exception [https://docs.python.org/3/library/exceptions.html#Exception]]) – exception object which was raised or None

	
on_stopped(original_message, reason='')

	Callback which is called when pipeline is stopped via
StopPipeline

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – message describing why the pipeline stopped

	
run(message=None)

	Method that starts execution of pipeline stages.

To stop the pipeline
raise StopPipeline inside any callback.

	Parameters

	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Message as is, without deserialization.
Or message attributes
if the executor was instantiated with neither a deserializer nor a handler
(useful to quickly publish message attributes by hand)

happyly.listening.executor.ResultAndDeserialized

	
class happyly.listening.executor.ResultAndDeserialized(result, deserialized)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Create new instance of ResultAndDeserialized(result, deserialized)

	deserialized

	Alias for field number 1

	result

	Alias for field number 0

	
deserialized

	Alias for field number 1

	
result

	Alias for field number 0

happyly.listening.listener

Description

BaseListener and its subclasses.
Listener is a form of Executor
which is able to run pipeline by an event coming from a subscription.

Classes

	BaseListener(subscriber, handler, deserializer)

	Listener is a form of Executor which is able to run pipeline by an event coming from a subscription.

	EarlyAckListener(subscriber, handler, …[, …])

	Acknowledge-aware BaseListener, which performs ack() right after on_received() callback is finished.

	LateAckListener(subscriber, handler, …[, …])

	Acknowledge-aware listener, which performs ack() at the very end of pipeline.

	ListenerWithAck(subscriber, handler, …[, …])

	Acknowledge-aware listener.

happyly.listening.listener.BaseListener

	
class happyly.listening.listener.BaseListener(subscriber, handler, deserializer, serializer=<happyly.serialization.dummy.DummySerde object>, publisher=None)

	Bases: happyly.listening.executor.Executor, typing.Generic [https://docs.python.org/3/library/typing.html#typing.Generic]

Listener is a form of Executor
which is able to run pipeline by an event coming from a subscription.

Listener itself doesn’t know how to subscribe,
it subscribes via a provided subscriber.

As any executor, implements managing of stages inside the pipeline
(deserialization, handling, serialization, publishing)
and contains callbacks between the stages which can be easily overridden.

As any executor, listener does not implement stages themselves,
it takes internal implementation of stages from corresponding components:
handler, deserializer, publisher.

It means that listener is universal
and can work with any serialization/messaging technology
depending on concrete components provided to listener’s constructor.

	start_listening()

	

	
subscriber = None

	Provides implementation of how to subscribe.

Type: ~S

happyly.listening.listener.EarlyAckListener

	
class happyly.listening.listener.EarlyAckListener(subscriber, handler, deserializer, serializer=<happyly.serialization.dummy.DummySerde object>, publisher=None)

	Bases: happyly.listening.listener.ListenerWithAck, typing.Generic [https://docs.python.org/3/library/typing.html#typing.Generic]

Acknowledge-aware BaseListener,
which performs ack() right after
on_received() callback is finished.

happyly.listening.listener.LateAckListener

	
class happyly.listening.listener.LateAckListener(subscriber, handler, deserializer, serializer=<happyly.serialization.dummy.DummySerde object>, publisher=None)

	Bases: happyly.listening.listener.ListenerWithAck, typing.Generic [https://docs.python.org/3/library/typing.html#typing.Generic]

Acknowledge-aware listener,
which performs ack() at the very end of pipeline.

	on_finished(original_message, error)

	Callback which is called when pipeline finishes its execution.

	
on_finished(original_message, error)

	Callback which is called when pipeline finishes its execution.
Is guaranteed to be called unless pipeline is stopped via
StopPipeline.

	Parameters

	
	original_message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Exception [https://docs.python.org/3/library/exceptions.html#Exception]]) – exception object which was raised or None

happyly.listening.listener.ListenerWithAck

	
class happyly.listening.listener.ListenerWithAck(subscriber, handler, deserializer, serializer=<happyly.serialization.dummy.DummySerde object>, publisher=None)

	Bases: happyly.listening.listener.BaseListener, typing.Generic [https://docs.python.org/3/library/typing.html#typing.Generic]

Acknowledge-aware listener.
Defines ListenerWithAck.ack() method.
Subclass ListenerWithAck and specify when to ack
by overriding the corresponding callbacks.

	ack(message)

	Acknowledge the message using implementation from subscriber, then log success.

	on_acknowledged(message)

	Callback which is called write after message was acknowledged.

	
on_acknowledged(message)

	Callback which is called write after message was acknowledged.

Override it in your custom Executor/Listener if needed,
but don’t forget to call implementation from base class.

	Parameters

	message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

	
ack(message)

	Acknowledge the message using implementation from subscriber,
then log success.

	Parameters

	message (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Message as it has been received, without any deserialization

happyly.schemas.schema

Description

Classes

	Schema(*args, **kwargs)

	Marshmallow [https://marshmallow.readthedocs.io/en/2.x-line/index.html] schema, which raises errors on mismatch (extra fields provided also raise exception).

happyly.schemas.schema.Schema

	
class happyly.schemas.schema.Schema(*args, **kwargs)

	Bases: marshmallow.schema.Schema

Marshmallow [https://marshmallow.readthedocs.io/en/2.x-line/index.html] schema, which raises errors on mismatch
(extra fields provided also raise exception).

Subclass it just like any marshmallow Schema [https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema]
to describe schema.

Instantiation with no arguments is a good strict default,
but you can pass any arguments valid for marshmallow.Schema [https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema]

	opts

	

	check_unknown_fields(data, original_data)

	

happyly.caching.cacher

Description

Classes

	Cacher

	Abstract base class which defines interface of any caching component to be used via CacheByRequestIdMixin or similar mixin.

happyly.caching.cacher.Cacher

	
class happyly.caching.cacher.Cacher

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract base class
which defines interface of any caching component
to be used via CacheByRequestIdMixin or similar mixin.

	add(data, key)

	Add the provided data to cache and store it by the provided key.

	get(key)

	Returns data which is stored in cache by the provided key.

	remove(key)

	Remove data from cache which is stored by the provided key.

	
add(data, key)

	Add the provided data to cache
and store it by the provided key.

	
remove(key)

	Remove data from cache
which is stored by the provided key.

	
get(key)

	Returns data which is stored in cache
by the provided key.

happyly.caching.mixins

Description

Classes

	CacheByRequestIdMixin(cacher)

	Mixin which adds caching functionality to Listener.

happyly.caching.mixins.CacheByRequestIdMixin

	
class happyly.caching.mixins.CacheByRequestIdMixin(cacher)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mixin which adds caching functionality to Listener.
Utilizes notions of listener’s topic
and request id of message –
otherwise will not work.

To be used via multiple inheritance.
For example, given some component SomeListener
you can define its caching equivalent
by defining SomeCachedListener which inherits
from both SomeListener and CacheByRequestIdMixin.

	on_deserialization_failed(message, error)

	

	on_published(original_message, …)

	

	on_received(message)

	

happyly.serialization.serializer

Description

Classes

	Serializer

	Abstract base class for Serializer.

	SerializerWithSchema(schema)

	

happyly.serialization.serializer.Serializer

	
class happyly.serialization.serializer.Serializer

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract base class for Serializer.
Provides serialize() method
which should be implemented by subclasses.

	from_function(func)

	

	serialize(message_attributes)

	
	rtype

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

happyly.serialization.serializer.SerializerWithSchema

	
class happyly.serialization.serializer.SerializerWithSchema(schema)

	Bases: happyly.serialization.serializer.Serializer, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

	schema

	

happyly.serialization.deserializer

Description

Classes

	Deserializer

	

	DeserializerWithSchema(schema)

	

happyly.serialization.deserializer.Deserializer

	
class happyly.serialization.deserializer.Deserializer

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

	build_error_result(message, error)

	
	rtype

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	deserialize(message)

	
	rtype

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	from_function(func)

	

happyly.serialization.deserializer.DeserializerWithSchema

	
class happyly.serialization.deserializer.DeserializerWithSchema(schema)

	Bases: happyly.serialization.deserializer.Deserializer, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

	schema

	

happyly.handling.handler

Description

Classes

	Handler

	A class containing logic to handle a parsed message.

happyly.handling.handler.Handler

	
class happyly.handling.handler.Handler

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A class containing logic to handle a parsed message.

	handle(message)

	Applies logic using a provided message, optionally gives back one or more results.

	on_handling_failed(message, error)

	Applies fallback logic using a provided message when handle() fails, optionally gives back one or more results.

	
handle(message)

	Applies logic using a provided message,
optionally gives back one or more results.
Each result consists of message attributes which can be serialized and sent.
When fails, calls on_handling_failed()

	Parameters

	message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A parsed message as a dictionary of attributes

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Returns

	None if no result is extracted from handling,
a dictionary of attributes for single result

	
on_handling_failed(message, error)

	Applies fallback logic using a provided message
when handle() fails,
optionally gives back one or more results.
Enforces users of Handler class
to provide explicit strategy for errors.

If you want to propagate error further to the underlying Executor/Handler,
just re-raise an error here:

def on_handling_failed(self, message, error):
 raise error

	Parameters

	
	message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A parsed message as a dictionary of attributes

	error (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Error raised by handle()

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Returns

	None if no result is extracted from handling,
a dictionary of attributes for single result

happyly.handling.dummy_handler._DummyHandler

	
class happyly.handling.dummy_handler._DummyHandler

	Bases: happyly.handling.handler.Handler

	handle(message)

	Applies logic using a provided message, optionally gives back one or more results.

	on_handling_failed(message, error)

	Applies fallback logic using a provided message when handle() fails, optionally gives back one or more results.

	
handle(message)

	Applies logic using a provided message,
optionally gives back one or more results.
Each result consists of message attributes which can be serialized and sent.
When fails, calls on_handling_failed()

	Parameters

	message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A parsed message as a dictionary of attributes

	Returns

	None if no result is extracted from handling,
a dictionary of attributes for single result

	
on_handling_failed(message, error)

	Applies fallback logic using a provided message
when handle() fails,
optionally gives back one or more results.
Enforces users of Handler class
to provide explicit strategy for errors.

If you want to propagate error further to the underlying Executor/Handler,
just re-raise an error here:

def on_handling_failed(self, message, error):
 raise error

	Parameters

	
	message (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – A parsed message as a dictionary of attributes

	error (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Error raised by handle()

	Returns

	None if no result is extracted from handling,
a dictionary of attributes for single result

happyly.exceptions

Description

Exceptions

	FetchedNoResult()

	Exception thrown by Executor.run_for_result() when it is unable to fetch a result

	StopPipeline([reason])

	This exception should be raised to stop a pipeline.

happyly.exceptions.FetchedNoResult

	
exception happyly.exceptions.FetchedNoResult

	Exception thrown by Executor.run_for_result()
when it is unable to fetch a result

happyly.exceptions.StopPipeline

	
exception happyly.exceptions.StopPipeline(reason='')

	This exception should be raised to stop a pipeline.
After raising it, Executor.on_stopped() will be called.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 happyly	

 	
 	
 happyly.caching.cacher	

 	
 	
 happyly.caching.mixins	

 	
 	
 happyly.exceptions	

 	
 	
 happyly.handling.handler	

 	
 	
 happyly.listening.executor	

 	
 	
 happyly.listening.listener	

 	
 	
 happyly.schemas.schema	

 	
 	
 happyly.serialization.deserializer	

 	
 	
 happyly.serialization.serializer	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | O
 | P
 | R
 | S

_

 	
 	_DummyHandler (class in happyly.handling.dummy_handler)

A

 	
 	ack() (happyly.listening.listener.ListenerWithAck method)

 	
 	add() (happyly.caching.cacher.Cacher method)

B

 	
 	BaseListener (class in happyly.listening.listener)

C

 	
 	CacheByRequestIdMixin (class in happyly.caching.mixins)

 	
 	Cacher (class in happyly.caching.cacher)

D

 	
 	deserialized (happyly.listening.executor.ResultAndDeserialized attribute)

 	Deserializer (class in happyly.serialization.deserializer)

 	
 	deserializer (happyly.listening.executor.Executor attribute)

 	DeserializerWithSchema (class in happyly.serialization.deserializer)

E

 	
 	EarlyAckListener (class in happyly.listening.listener)

 	
 	Executor (class in happyly.listening.executor)

F

 	
 	FetchedNoResult

G

 	
 	get() (happyly.caching.cacher.Cacher method)

H

 	
 	handle() (happyly.handling.dummy_handler._DummyHandler method)

 	(happyly.handling.handler.Handler method)

 	Handler (class in happyly.handling.handler)

 	handler (happyly.listening.executor.Executor attribute)

 	happyly.caching.cacher (module)

 	happyly.caching.mixins (module)

 	
 	happyly.exceptions (module)

 	happyly.handling.handler (module)

 	happyly.listening.executor (module)

 	happyly.listening.listener (module)

 	happyly.schemas.schema (module)

 	happyly.serialization.deserializer (module)

 	happyly.serialization.serializer (module)

L

 	
 	LateAckListener (class in happyly.listening.listener)

 	
 	ListenerWithAck (class in happyly.listening.listener)

O

 	
 	on_acknowledged() (happyly.listening.listener.ListenerWithAck method)

 	on_deserialization_failed() (happyly.listening.executor.Executor method)

 	on_deserialized() (happyly.listening.executor.Executor method)

 	on_finished() (happyly.listening.executor.Executor method)

 	(happyly.listening.listener.LateAckListener method)

 	on_handled() (happyly.listening.executor.Executor method)

 	
 	on_handling_failed() (happyly.handling.dummy_handler._DummyHandler method)

 	(happyly.handling.handler.Handler method)

 	(happyly.listening.executor.Executor method)

 	on_published() (happyly.listening.executor.Executor method)

 	on_publishing_failed() (happyly.listening.executor.Executor method)

 	on_received() (happyly.listening.executor.Executor method)

 	on_stopped() (happyly.listening.executor.Executor method)

P

 	
 	publisher (happyly.listening.executor.Executor attribute)

R

 	
 	remove() (happyly.caching.cacher.Cacher method)

 	result (happyly.listening.executor.ResultAndDeserialized attribute)

 	
 	ResultAndDeserialized (class in happyly.listening.executor)

 	run() (happyly.listening.executor.Executor method)

S

 	
 	Schema (class in happyly.schemas.schema)

 	Serializer (class in happyly.serialization.serializer)

 	
 	SerializerWithSchema (class in happyly.serialization.serializer)

 	StopPipeline

 	subscriber (happyly.listening.listener.BaseListener attribute)

 _images/callbacks.png

_images/stop.png
v

deserialize

_images/callbacks_with_failures.png

_images/run.png
deserialize

publish

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Happyly’s documentation!

 		
 Use cases

 		
 Google Pub/Sub

 		
 Painless transport change

 		
 Installation

 		
 Key Concepts

 		
 Handler

 		
 Executor

 		
 Listener

 		
 Stages

 		
 Deserializer

 		
 Serializer

 		
 Publisher

 		
 Callbacks

 		
 Overview

 		
 What if I need an emergency stop?

 		
 API Reference

 		
 happyly.listening.executor

 		
 happyly.listening.executor.Executor

 		
 happyly.listening.executor.ResultAndDeserialized

 		
 happyly.listening.listener

 		
 happyly.listening.listener.BaseListener

 		
 happyly.listening.listener.EarlyAckListener

 		
 happyly.listening.listener.LateAckListener

 		
 happyly.listening.listener.ListenerWithAck

 		
 happyly.schemas.schema

 		
 happyly.schemas.schema.Schema

 		
 happyly.caching.cacher

 		
 happyly.caching.cacher.Cacher

 		
 happyly.caching.mixins

 		
 happyly.caching.mixins.CacheByRequestIdMixin

 		
 happyly.serialization.serializer

 		
 happyly.serialization.serializer.Serializer

 		
 happyly.serialization.serializer.SerializerWithSchema

 		
 happyly.serialization.deserializer

 		
 happyly.serialization.deserializer.Deserializer

 		
 happyly.serialization.deserializer.DeserializerWithSchema

 		
 happyly.handling.handler

 		
 happyly.handling.handler.Handler

 		
 happyly.handling.dummy_handler._DummyHandler

 		
 happyly.exceptions

 		
 happyly.exceptions.FetchedNoResult

 		
 happyly.exceptions.StopPipeline

_static/plus.png

